On Nonnil-Noetherian Rings

نویسنده

  • Ayman Badawi
چکیده

Let R be a commutative ring with 1 such that Nil(R) is a divided prime ideal of R. The purpose of this paper is to introduce a new class of rings that is closely related to the class of Noetherian rings. A ring R is called a Nonnil-Noetherian ring if every nonnil ideal of R is finitely generated. We show that many of the properties of Noetherian rings are also true for Nonnil-Noetherian rings; we use the idealization construction to give examples of Nonnil-Noetherian rings that are not Noetherian rings; we show that for each n 1, there is a Nonnil-Noetherian ring with Krull dimension n which is not a Noetherian ring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

متن کامل

On co-Noetherian dimension of rings

We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This  is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...

متن کامل

Factoring Nonnil Ideals into Prime and Invertible Ideals

For a commutative ring R, let Nil(R) be the set of all nilpotent elements of R, Z(R) be the set of all zero divisors of R, T (R) be the total quotient ring of R, and H = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. For a ring R ∈ H, let φ : T (R) −→ RNil(R) such that φ(a/b) = a/b for every a ∈ R and b ∈ R\Z(R). A ring R is called a ZPUI ring if every proper ideal of R...

متن کامل

On zero divisor graph of unique product monoid rings over Noetherian reversible ring

 Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors.  The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero  zero-divisors of  $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$.  In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...

متن کامل

Upper bounds for noetherian dimension of all injective modules with Krull dimension

‎In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings‎. ‎In particular‎, ‎we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003